Modeling Word Learning As Communicative Inference

نویسنده

  • Michael C. Frank
چکیده

How do children learn their first words? I describe a model that makes joint inferences about what speakers are trying to talk about and the meanings of the words they use. This model provides a principled framework for integrating a wide variety of non-linguistic information sources into the process of word learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity to sampling in Bayesian word learning.

We report a new study testing our proposal that word learning may be best explained as an approximate form of Bayesian inference (Xu & Tenenbaum, in press). Children are capable of learning word meanings across a wide range of communicative contexts. In different contexts, learners may encounter different sampling processes generating the examples of word-object pairings they observe. An ideal ...

متن کامل

Early Word Learning Through Communicative Inference

How do children learn their first words? Do they do it by gradually accumulating information about the co-occurrence of words and their referents over time, or are words learned via quick social inferences linking what speakers are looking at, pointing to, and talking about? Both of these conceptions of early word learning are supported by empirical data. This thesis presents a computational an...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Learning and using language via recursive pragmatic reasoning about other agents

Language users are remarkably good at making inferences about speakers’ intentions in context, and children learning their native language also display substantial skill in acquiring the meanings of unknown words. These two cases are deeply related: Language users invent new terms in conversation, and language learners learn the literal meanings of words based on their pragmatic inferences abou...

متن کامل

A Localist Neural Network Model for Early Child Language Acquistion from Motherese

This paper presents a localist multimodal neural network that uses Hebbian learning to acquire one-word child language from child directed speech (CDS) comprising multiword utterances and queries in addition to one-word utterances. The model implements cross-situational learning between linguistic words used in child directed speech, the accompanying perceptual entities, conceptual relations an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009